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Abstract
The Schrödinger equations which are exactly solvable in terms of associated
special functions are directly related to some self-adjoint operators defined
in the theory of hypergeometric type equations. The fundamental formulae
occurring in a supersymmetric approach to these Hamiltonians are
consequences of some formulae concerning the general theory of associated
special functions. We use this connection in order to obtain a general theory of
Schrödinger equations exactly solvable in terms of associated special functions,
and to extend certain results known in the case of some particular potentials.

PACS numbers: 02.30.Gp, 03.65.Ge, 02.30.Tb

1. Introduction

It is well known [5, 10] that, in the case of certain potentials, the Schrödinger equation is
exactly solvable and its solutions can be expressed in terms of the so-called associated special
functions. The purpose of this paper is to present a general theory of these quantum systems.
Our systematic study recovers a number of earlier results in a natural unified way and also
leads to new findings.

The study of the Hamiltonians of these quantum systems can be reduced to the study
of some directly related self-adjoint operators defined in the general theory of orthogonal
polynomials [23]. For example, in order to factorize a Hamiltonian as a product of two first-
order differential operators it is sufficient to factorize the corresponding self-adjoint operator.
We show that the self-adjoint operators corresponding to the Hamiltonians of all the considered
quantum systems can be studied together in a unified and explicit way. This leads to a general
theory of quantum systems exactly solvable in terms of associated special functions.

The number of papers concerning exactly solvable quantum systems and related subjects
is very large (see [5, 10, 11, 17, 25] and references therein). Our approach is based on
the formalism of the factorization method [10, 22] and on the raising/lowering operators
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Table 1. Some important particular cases (the parameters α, β belong to (−1,∞)).

Name (a, b) σ (s) τ (s) �(s)

Hypergeometric (0, 1) s(1 − s) (α + 1)− (α + β + 2)s sα(1 − s)β

Jacobi (−1, 1) 1 − s2 (β − α)− (α + β + 2)s (1 − s)α(1 + s)β

Laguerre (0,∞) s α + 1 − s sα e−s

Hermite (−∞,∞) 1 −s e−s2

presented in general form (for the first time to our knowledge) by Jafarizadeh and Fakhri [11].
We re-obtain these operators in a simpler way, and use them in a rather different way. In
addition, we present some new results and applications concerning these operators.

2. Orthogonal polynomials and associated special functions

Many problems in quantum mechanics and mathematical physics lead to equations of the type

σ(s)y ′′(s) + τ (s)y ′(s) + λy(s) = 0 (1)

where σ(s) and τ (s) are polynomials of at most second and first degree, respectively, and λ
is a constant. These equations are usually called equations of hypergeometric type, and the
corresponding solutions functions of hypergeometric type [23]. Equation (1) can be reduced
to the self-adjoint form

[σ(s)�(s)y ′(s)]′ + λ�(s)y(s) = 0 (2)

by choosing a function � such that [σ(s)�(s)]′ = τ (s)�(s). For

λ = λl = − 1
2 l(l − 1)σ ′′ − lτ ′ with l ∈ N (3)

there exists a polynomial�l of degree l satisfying (1), that is,

σ(s)�′′
l (s) + τ (s)�′

l (s) + λl�l(s) = 0. (4)

If there exists a finite or infinite interval (a, b) such that

σ(s)�(s)sk|s=a = 0 σ(s)�(s)sk |s=b = 0 for all k ∈ N (5)

and if σ(s) > 0, �(s) > 0 for all s ∈ (a, b), then the polynomials �l are orthogonal with
weight function �(s) in the interval (a, b)∫ b

a

�l(s)�k(s)�(s) ds = 0 for λl �= λk. (6)

In this case �l are known as classical orthogonal polynomials [23]. We shall prove that the
condition λl �= λk from (6) can be replaced by l �= k. The main particular cases of this general
approach are presented in table 1.

The classical orthogonal polynomials�l satisfy a three-term recurrence relation

s�l(s) = αl�l+1(s) + βl�l(s) + γl�l−1(s) (7)

and Rodrigues formula

�l(s) = Bl

�(s)
[σ l(s)�(s)](l) (8)

where αl, βl, γl and Bl are constants [23].
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Figure 1. The functions �l,m satisfy the relation Hm�l,m = λl�l,m, and are related (up to some
multiplicative constants) through the operators Am,A+

m, am, a
+
m,Um and U−1

m = U+
m.

Consider a system of classical orthogonal polynomials, and let κ(s) = √
σ(s). By

differentiating equation (4) m times and multiplying it by κm(s), we get for each m ∈
{0, 1, 2, . . . , l} the associated differential equation

−σ(s)�′′
l,m − τ (s)�′

l,m +

[
m(m− 2)

4

σ ′2(s)
σ (s)

+
mτ(s)

2

σ ′(s)
σ (s)

− 1

2
m(m− 2)σ ′′(s)−mτ ′(s)

]
�l,m = λl�l,m (9)

where

�l,m(s) = κm(s)�
(m)

l (s) (10)

are known as the associated special functions. We have ([23], p 8)∫ b

a

�l,m(s)�k,m(s)�(s) ds =
∫ b

a

�
(m)
l (s)�

(m)
k (s)σm(s)�(s) ds = 0 (11)

for any m ∈ N and l, k ∈ {m,m + 1,m + 2, . . .} with l �= k. This means that for each m ∈ N,
the set {�m,m,�m+1,m,�m+2,m, . . .} (see figure 1) is an orthogonal sequence in the Hilbert
space

H =
{
ϕ : (a, b) −→ C

∣∣∣∣
∫ b

a

|ϕ(s)|2�(s) ds < ∞
}

(12)

with the scalar product given by

〈ϕ,ψ〉 =
∫ b

a

ϕ(s)ψ(s)�(s) ds. (13)

For each m ∈ N, let Hm be the linear span of {�m,m,�m+1,m,�m+2,m, . . .}. In the following
we shall restrict ourself to the case when Hm is dense in H for all m ∈ N. For this it is
sufficient that the interval (a, b) is finite, but not necessary.

Equation (9) can be written as

Hm�l,m = λl�l,m (14)
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whereHm : Hm −→ Hm is the differential operator

Hm = −σ(s) d2

ds2
− τ (s)

d

ds
+
m(m− 2)

4

σ ′2(s)
σ (s)

+
mτ(s)

2

σ ′(s)
σ (s)

− 1

2
m(m− 2)σ ′′(s)−mτ ′(s). (15)

The problem of factorization of operatorsHm is very important since it is directly related
to the factorization of some Schrödinger type operators [5, 10]. If we use in (9) a change
of variable s = s(x) such that ds/dx = κ(s(x)) or ds/dx = −κ(s(x)) and define the new
functions

�l,m(x) =
√
κ(s(x))�(s(x))�l,m(s(x)) (16)

then we get an equation of the Schrödinger type [10]

− d2

dx2
�l,m(x) + Vm(x)�l,m(x) = λl�l,m(x). (17)

For example, by starting from the equation of Jacobi polynomials with α = µ−1/2, β =
η − 1/2, and using the change of variable s(x) = cos x we obtain the Schrödinger equation
corresponding to the Pöschl–Teller potential [1, 6]

V0(x) = 1

4

[
µ(µ− 1)

cos2(x/2)
+
η(η − 1)

sin2(x/2)

]
− (µ + η)2

4
. (18)

3. Raising and lowering operators. Shape invariance

Lorente has shown recently [19, 20] that a factorization of H0 can be obtained by using the
three-term recurrence relation (7) and a consequence of the Rodrigues formula. Following
Lorente’s idea we obtain a factorization of Hm by using (10) and a three-term recurrence
relation.

Theorem 1. For any l ∈ N and anym ∈ {0, 1, . . . , l − 1} we have

�l,m+1(s) =
(
κ(s)

d

ds
−mκ ′(s)

)
�l,m(s). (19)

Proof. By differentiating (10) we get

�′
l,m(s) = mκm−1(s)κ ′(s)�(m)

l (s) + κm(s)�(m+1)
l (s)

that is, the relation

�′
l,m(s) = m

κ ′(s)
κ(s)

�l,m(s) +
1

κ(s)
�l,m+1(s)

equivalent to (19). �

Theorem 2. The three-term recurrence relation

�l,m+1(s) +

(
τ (s)

κ(s)
+ 2(m− 1)κ ′(s)

)
�l,m(s) + (λl − λm−1)�l,m−1(s) = 0 (20)

is satisfied for any l ∈ N and any m ∈ {1, 2, . . . , l − 1}. In addition, we have(
τ (s)

κ(s)
+ 2(l − 1)κ ′(s)

)
�l,l(s) + (λl − λl−1)�l,l−1(s) = 0. (21)
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Proof. By differentiating (4) m− 1 times we obtain

σ(s)�
(m+1)
l (s) + (m− 1)σ ′(s)�(m)

l (s) +
(m− 1)(m− 2)

2
σ ′′(s)�(m−1)

l (s)

+ τ (s)�(m)
l + (m− 1)τ ′(s)�(m−1)

l (s) + λl�
(m−1)
l (s) = 0.

If we multiply this relation by κm−1(s) then we get (20) for m ∈ {1, 2, . . . , l − 1}, and (21)
form = l. �

Theorem 3. For any l ∈ N and anym ∈ {0, 1, . . . , l − 1} we have the relation

(λl − λm)�l,m(s) =
(

−κ(s) d

ds
− τ (s)

κ(s)
− (m− 1)κ ′(s)

)
�l,m+1(s). (22)

Proof. If m ∈ {1, 2, . . . , l − 1} then by substituting (19) into (20) we get(
κ(s)

d

ds
+
τ (s)

κ(s)
+ (m− 2)κ ′(s)

)
�l,m(s) + (λl − λm−1)�l,m−1(s) = 0

that is, (22) holds for all m ∈ {0, 1, . . . , l − 2}. In the case m = l − 1 relation (22) follows
directly from (21). �

Theorem 4. The operators

Am : Hm −→ Hm+1 Am = κ(s)
d

ds
−mκ ′(s) (23)

and

A+
m : Hm+1 −→ Hm A+

m = −κ(s) d

ds
− τ (s)

κ(s)
− (m− 1)κ ′(s) (24)

are mutually adjoint [24].

Proof. Since σm(s)�(m)
l (s)�

(m+1)
k (s) is a polynomial, from (5) we get

〈Am�l,m,�k,m+1〉 =
∫ b

a

[κ(s)�′
l,m(s)−mκ ′(s)�l,m(s)]�k,m+1(s)�(s) ds

= κ(s)�l,m(s)�k,m+1(s)�(s)|ba −
∫ b

a

�l,m(s)[κ(s)�′
k,m+1(s)�(s)

+ κ(s)�k,m+1(s)�
′(s) + (m + 1)κ ′(s)�k,m+1(s)�(s)] ds

= σ(s)�(s)σm(s)�
(m)
l (s)�

(m+1)
k (s)|ba +

∫ b

a

�l,m(s)
(
A+
m�k,m+1

)
(s)�(s) ds

= 〈
�l,m,A

+
m�k,m+1

〉
for any l � m, k � m + 1. �

Since

‖�l,m+1‖2 = 〈�l,m+1,�l,m+1〉 = 〈Am�l,m,�l,m+1〉
= 〈
�l,m,A

+
m�l,m+1

〉 = (λl − λm)‖�l,m‖2

it follows that λl > λm for all l > m, and

‖�l,m+1‖ =
√
λl − λm‖�l,m‖. (25)

This is possible only if σ ′′(s) � 0 and τ ′(s) < 0. In particular, we have λl �= λk if and only if
l �= k.
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Theorem 5. The operators Hm : Hm −→ Hm are self-adjoint,

Hm − λm = A+
mAm Hm+1 − λm = AmA

+
m (26)

and

HmA
+
m = A+

mHm+1 AmHm = Hm+1Am (27)

for all m ∈ N.

Proof. Relations (19) and (22) can be written as

Am�l,m = �l,m+1 A+
m�l,m+1 = (λl − λm)�l,m (28)

and we get

A+
mAm�l,m = (λl − λm)�l,m AmA

+
m�l,m+1 = (λl − λm)�l,m+1 (29)

that is, (
A+
mAm + λm

)
�l,m = λl�l,m

(
AmA

+
m + λm

)
�l,m+1 = λl�l,m+1

whence

Hm = A+
mAm + λm Hm+1 = AmA

+
m + λm.

The intertwining relations (27) and the fact that the operators Hm are self-adjoint are direct
consequences of (26). �

From (26) we obtain the relation expressing the shape invariance [2, 7, 8] of operatorsHm

AmA
+
m = A+

m+1Am+1 + rm+1 (30)

where rm+1 = λm+1 − λm = −mσ ′′ − τ ′. In particular, we have λl = ∑l
k=1 rk and

H0 = A+
0A0

H1 = A0A
+
0 = A+

1A1 + r1
H2 = A1A

+
1 + r1 = A+

2A2 + r1 + r2
. . .

Hm+1 = AmA
+
m +

∑m
k=1 rk = A+

m+1Am+1 +
∑m+1

k=1 rk

. . . .

(31)

The function�l,l(s) = κl(s)�
(l)
l (s) satisfies the relation Al�l,l = 0, and

�l,m = A+
m

λl − λm

A+
m+1

λl − λm+1
· · · A+

l−2

λl − λl−2

A+
l−1

λl − λl−1
�l,l (32)

for all l ∈ N and m ∈ {0, 1, 2, . . . , l − 1}.
The operators Am and A+

m have been previously obtained by Jafarizadeh and Fakhri [11]
after a rather long calculation by using the ansatz

Am = f1(s)
d

ds
+ g1(s) A+

m = f2(s)
d

ds
+ g2(s). (33)

We use this opportunity to correct a minor error existing in [11]. Since Jafarizadeh and Fakhri
[11] use for the associated special functions the definition�l,m(s) = (−1)mκm(s)�(m)

l (s), the
proof of our theorem 1 shows that one has to multiply the expressions of B (m) andA (m) from
[11] by (−1) in order to get the correct raising/lowering operators. The expression for Am in
the Legendre case has been known for a long time [26].
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4. Creation and annihilation operators

For each m ∈ N, the sequence {|m,m〉, |m + 1,m〉, |m + 2,m〉, . . .}, where

|l,m〉 = �l,m/‖�l,m‖ (34)

is an orthonormal basis of H, and

Um : H −→ H Um|l, m〉 = |l + 1,m + 1〉 (35)

is a unitary operator.

Theorem 6. The operators (see figure 1)

am, a
+
m : Hm −→ Hm am = U+

mAm a+
m = A+

mUm (36)

are mutually adjoint, and

am|l, m〉 = √
λl − λm|l − 1,m〉 for all l � m + 1

a+
m|l, m〉 = √

λl+1 − λm|l + 1,m〉 for all l � m.
(37)

Proof. This result follows from (25) and the fact that Am and A+
m are mutually adjoint. �

For each l > m we have

|l,m〉 =
(
a+
m

)l−m
√
(λl − λm)(λl−1 − λm) · · · (λm+1 − λm)

|m,m〉. (38)

Since

ama
+
m�l,m = (λl+1 − λm)�l,m a+

mam�l+1,m = (λl+1 − λm)�l+1,m (39)

we get the factorization

Hm − λm = a+
mam (40)

and the relation[
am, a

+
m

]
�l,m = (λl+1 − λl)�l,m. (41)

By using the operator Rm = −σ ′′Nm − τ ′, where Nm is the number operator

Nm : Hm −→ Hm Nm�l,m = l�l,m (42)

relation (41) can be written as [2, 6][
am, a

+
m

] = Rm. (43)

Since [
a+
m,Rm

] = σ ′′a+
m [am,Rm] = −σ ′′am (44)

it follows that the Lie algebra Lm generated by
{
a+
m, am

}
is finite dimensional.

Theorem 7.

Lm is isomorphic to

{
su(1, 1) if σ ′′ < 0
Heisenberg–Weyl algebra if σ ′′ = 0.

(45)

Proof. If σ ′′ < 0 then K+ = √−2/σ ′′a+
m,K− = √−2/σ ′′am and K0 = (−1/σ ′′)Rm form a

basis of Lm such that

[K0,K±] = ±K± [K+,K−] = −2K0.
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In the case σ ′′ = 0 the operator Rm is a constant operator, namely, Rm = −τ ′. Since τ ′ < 0,
the operators P+ = √−1/τ ′a+

m, P− = √−1/τ ′am and the identity operator I form a basis of
Lm such that

[P+, P−] = −I [P+, I ] = 0 [P−, I ] = 0

that is, Lm is isomorphic to the Heisenberg–Weyl algebra h(2). �

The result presented in theorem 7 is a direct consequence of the fact that λl is a polynomial
function of l of at most second degree [2, 25]. Since in the case of the quantum systems
considered in this paper we cannot have σ ′′ > 0, the Lie algebra Lm cannot be isomorphic to
su(2).

By using (36), relation (43) can be written as

U+
mAmA

+
mUm − A+

mUmU
+
mAm = Rm

and in view of (61) we get

U+
m(Hm+1 − λm)Um − (Hm − λm) = Rm

that is, the relation expressing the shape invariance [8] of Hm

Hm+1 = Um(Hm + Rm)U+
m. (46)

One can also remark that

AmRm = Rm+1Am RmA
+
m = A+

mRm+1 (47)

[Hm, am] = −Rmam
[
Hm, a

+
m

] = a+
mRm (48)

and

UmRmU
+
m = Rm+1 + σ ′′ (49)

for all m ∈ N.
The role played by the Lie algebra su(1, 1) in the case of our quantum systems is more

important. In certain cases, Schrödinger equation can be transformed into the differential
equation of orthogonal polynomials in group-theoretical terms [17].

5. Systems of coherent states

Let m ∈ N be a fixed natural number, and let

|n〉 = |m + n,m〉 en = λm+n − λm (50)

for all n ∈ N. Since

0 = e0 < e1 < e2 < · · · < en < · · · (51)

and

am|n〉 = √
en|n− 1〉 a+

m|n〉 = √
en+1|n + 1〉 (Hm − λm)|n〉 = en|n〉 (52)

we can define a system of coherent states by using the general setting presented in [1].
Let

εn =
{

1 if n = 0
e1e2 . . . en if n > 0.

(53)

If

R = lim sup
n→∞

n
√
εn �= 0 (54)
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then we can define

|z〉 = 1

N(|z|2)
∑
n�0

zn√
εn

|n〉 where (N(|z|2)2 =
∞∑
n=0

|z|2n
εn

(55)

for any z in the open disc C(0, R) of centre 0 and radius R. In this way, we get a continuous
family {|z〉|z ∈ C(0, R)} of normalized coherent states, eigenstates of the operator am

am|z〉 = z|z〉. (56)

6. Application to Schrödinger type operators

We have already seen that the operators Hm are directly related to some Schrödinger type
operators. If we use a change of variable s = s(x) such that ds/dx = κ(s(x)), then the
operators corresponding to Am and A+

m are the adjoint conjugate operators

Am = [κ(s)�(s)]1/2Am[κ(s)�(s)]−1/2|s=s(x) = d

dx
+Wm(x)

(57)
A+
m = [κ(s)�(s)]1/2A+

m[κ(s)�(s)]−1/2|s=s(x) = − d

dx
+Wm(x)

where the superpotentialWm(x) is given by the formula

Wm(x) = − τ (s(x))

2κ(s(x))
− 2m− 1

2κ(s(x))

d

dx
κ(s(x)). (58)

From (28) and (29) we get

Am�l,m(x) = �l,m+1(x) A+
m�l,m+1(x) = (λl − λm)�l,m(x) (59)

and (A+
mAm + λm

)
�l,m = λl�l,m

(AmA+
m + λm

)
�l,m+1 = λl�l,m+1 (60)

whence

− d2

dx2
+ Vm(x)− λm = A+

mAm − d2

dx2
+ Vm+1(x)− λm = AmA+

m (61)

and

Vm(x)− λm = W 2
m(x)− Ẇm(x) Vm+1(x)− λm = W 2

m(x) + Ẇm(x) (62)

where the dot means derivative with respect to x.
Since Am�m,m = 0, from (57) and (61) we get

�̇m,m +Wm(x)�m,m = 0 −�̈m,m + (Vm(x)− λm)�m,m = 0 (63)

whence

Wm(x) = − �̇m,m(x)
�m,m(x)

Vm(x) = �̈m,m(x)

�m,m(x)
+ λm. (64)

For each m ∈ {0, 1, 2, . . . , l − 1} we have

�l,m(x) = A+
m

λl − λm

A+
m+1

λl − λm+1
· · · A+

l−2

λl − λl−2

A+
l−1

λl − λl−1
�l,l(x). (65)

If we choose the change of variable s = s(x) such that ds/dx = −κ(s(x)), then formulae
(57), (58), (62) and (64) become

Am = − d

dx
+Wm(x) A+

m = d

dx
+Wm(x) (66)
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Wm(x) = − τ (s(x))

2κ(s(x))
+

2m− 1

2κ(s(x))

d

dx
κ(s(x)) (67)

Vm(x)− λm = W 2
m(x) + Ẇm(x) Vm+1(x)− λm = W 2

m(x)− Ẇm(x) (68)

Wm(x) = �̇m,m(x)

�m,m(x)
Vm(x) = �̈m,m(x)

�m,m(x)
+ λm (69)

respectively. For example, in the case of Pöschl–Teller potential (18) we obtain

W0(x) = 1

2

[
µ cot

x

2
− η tan

x

2

]
. (70)

7. Concluding remarks

The Schrödinger equations which are exactly solvable in terms of associated special functions
are directly related to the self-adjoint operators Hm defined by (15), and hence, each of them
can be described by the interval (a, b) and the corresponding functions σ(s), τ (s), �(s), s(x)
satisfying the conditions presented in section 2. This infinite class of exactly solvable
problems depending on several parameters contains well-known potentials (together with
their supersymmetric partners) as well as other physically relevant potentials [11].

Our results concerning the operators Hm allow these quantum systems to be studied
together in a unitary way, and to extend certain results presented up to now only in the
case of some particular potentials. In order to pass to a particular potential it suffices to
replace σ(s), τ (s), �(s), s(x) by the corresponding functions. The results concerning the
creation/annihilation operators and the coherent states are direct extensions of some results
presented in [1, 6] in the particular case of Pöschl–Teller potentials.

In this paper we analyse an important class of exactly solvable Schrödinger equations, but
the class of known solvable problems is larger [3, 4, 12, 13, 18]. Generally, the methods used to
enlarge the class of exactly solvable potentials are based on the idea of finding pairs of (almost)
isospectral operators, and the construction of new exactly solvable Hamiltonians starts from a
known exactly solvable Hamiltonian. In most of the cases the starting Hamiltonian belongs
to the class considered in this paper.

We have already seen that the superpotential Wm which allows the construction of the
supersymmetric partner Vm+1 of Vm satisfies the Riccati equation

Vm(x)− λm = W 2
m(x)− Ẇm(x). (71)

New supersymmetric partners of Vm can be obtained by finding new solutions W of this
equation [12, 13] or by solving the more general Riccati equation [3, 21]

Vm(x)− ε = W 2(x)− Ẇ (x). (72)

The usual algebraic approach can also be extended to these new exactly solvable potentials
by using some nonlinear generalizations of Lie algebras [4]. Certain algebraic properties
become more transparent if we use the method proposed recently by Gurappa et al [9] which
allows the space of the solutions of a linear differential equation to be connected to the space
of monomials, but the advantages obtained in the case of our Hamiltonians are not very
significant.

The one-dimensional problems considered in this paper are useful for solving separable
potential problems. It is known [5] that a problem is algebraically solvable so long as the
separated problems of each of the coordinates can be solved algebraically. In the case of
certain potentials, the Schrödinger equation admits separation of variables in two or more
coordinate systems [14–16].
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